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Dissipative three-wave structures in stimulated backscattering.
[I. Superluminous and subluminous solitons
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Stimulated Brillouin or Raman backscattering of a cw pump into dissipative material and Stokes waves,
governed by the nonlinear space-time three-wave resonant model, gives rise to solitary pulses, which are
experimentally obtained in long fiber-ring cavities. We show that the known superluminous symmetrical
soliton solution is unstable for small dissipation, cascading to a turbulent multipeak structure. A stable single-
peak dissipative soliton solution prevails for moderate dissipdtiamping, and at a lower critical dissipation
operates a pitchfork bifurcation, first yielding a stable bisolitary structure, and then multipeak space-time-
dependent structures. Besides a continuous set of asymptotically stable superluminous and subluminous dissi-
pative solitary attractors, the general nonsymmetrical and nonintegrable case is dependent only on the wave
front exponential slope of the backscattered Stokes wave, in agreement with the solitary pulses observed in a
Brillouin fiber-ring laser. These three-wave dissipative solitons result from the dynamical compensation be-
tween the wave-front slope dispersion and the pump depletion. We give an explicit solution for the particular
integrable luminous velocity case. We also show that initial steep Stokes envéli@peSaussian profiles
evolve to the universal subluminous solitary attractor of papg81063-651X97)13301-3

PACS numbe(s): 42.81.Dp, 42.65.Es, 42.65.Dr, 42.65.Tg

[. INTRODUCTION The main purpose here is to present for this problem a
continuous family of dissipative solitary attractors resulting
Stimulated Brillouin backscatteringSBBS experiments from the unlimited three-wave interaction of the cw pump in
in liquids [1], gaseq 2], plasmaq3], and in fiber-ring reso- the presence of dissipative Stokes and material waves. The
nators[4—6], and stimulated Raman backscatter{i®RBS dissipation then introduces the concept of an attractor, yield-
in liquids [7,8], give rise to localized traveling backscattereding solitary structures extremely robust with respect, for in-
Stokes pulses. The space-time dynamics in one spatial dstance, to noise perturbations. These attractors support the
mension, resulting from the resonant three-wave nonlineagxperimental observation of a large variety of dissipative
interaction between the pump wat,, the material wave solitary Stokes pulses in a Brillouin fiber-ring cavity, among
E,, and the backscattered Stokes wag is governed by them the experimental results presented here.
the nonlinear three-wave partial differential equatiGPBE) From a theoretical point of view, two kinds of initial
model within the slowly varying envelope approximation. and/or boundary conditions for the, or Eg envelopes will
This model is particularly appropriate for describing the dy-yield two classes of localized traveling backscattered struc-
namics in single-mode optical fibef8,4]. The three-wave tures.
interaction problem has been the object of many theoretical (l) It was shown in paper [[10] that the cw pump inter-
studies and numerical simulations, to which we referred iracting with initially boundedStokes or material wave fluc-
paper 1[10]. tuations yields asubluminousackscattered three-wave soli-
We are interested in nonconservative SBBS or SRBS inary structure, whose constant velocity is uniquely
the presence of a continuous pump, which has been intaletermined by the damping coefficients and the cw-pump
grated by the inverse scattering transfofi®T) in the non-  level, and which is a universal attractor for any initial con-
dissipative casél1l], giving rise to backscattered solitons. ditions in a compact support. ThiSauchy problenof an
Our aim here is to study the nonconservative problem in thénitially bounded Stokes wave packet cannot yield a super-
presence of material and Stokes dissipatidamping, in  luminous asymptotic traveling structure, since the front of
order to analyze the nonlinear dynamics in a cw-pumpedhe bounded wave packet propagates at the velocity of light.
optical-fiber-ring laser, where the periodic round-trip interac-  (Il) Initially unboundedStokes conditions present well-
tion in a long lossy cavity may be associated with the nonknown analyticalsuperluminoug12] three-wave soliton so-
conservative unlimited interaction. Indeed, it has been showfutions [13,14], also available for dissipative, andEg en-
in a Brillouin fiber-ring cavity that, above the laser thresholdvelopes[5,15,16. Perturbative IST has been considered in
and below a critical feedback, generation of dissipative solithe small dissipation cagé7], but we shall see he&ec. 1)
tary SBBS Stokes pulsg$] takes place from any initial that the soliton solution is unstable in this case and is accom-
condition[6]. panied by a turbulent tail. Such turbulent behavior is reached
via a bifurcation cascade from the stable dissipative one-
soliton solution by decreasing the dissipation: it begins with
*Electronic address: montes@unice.fr a bisolitary structure, and is followed by a space-time-
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dependent multipeak solitary regime for very small dissipacoupling constant K  [E;/E.,—E;, tKEgy—t,
tion. -1 P

Besides this bifurcation scenario of the superluminousXCKECW/nHX' Yi(KEa) = w (I=p.S2))
soliton solution, we present the stable family of asymmetric
dissipative solitons for the general nonintegrable problem,
resulting from the unlimited interaction at any dissipation In order to obtain dissipative traveling three-wave struc-
(Sec. l)). This family constitutes a continuous set of solitary tures, we must assume a constant pump infyt«(1) com-
attractors, backward traveling with respect to the continuougensating for the Stokes and material losses. Therefore, con-
pump at velocities running from superluminous to sublumi-sidering that the threshold condition is satisfied
nous, the dynamics dependent only on the wave-front slope
p of the backscattered Stokes watgtope-dependent veloc- ftta= YsYa <1, @)
ity dispersion. An explicit solution for the integrable lumi- (KEcw)
nous velocity case is derived for the first time, to our knowl- ) .
edge. These stable solitary structures, generated by tj€EsandE; waves are unstable, exponentially growing in
backscattering three-wave instability, attain their nonlineafn€ linear parametric regime, until a nonlinear stage is
steady regime through dynamical compensation between tH&ached, where the depletion of the pufp saturates the
wave-front slope dispersion and the pump deplettmiance instability. The_ problem will be to determine the nonlinear
betweenvelocity dispersion steepenirand nonlinear pump threeiwave solitary Sf[ructures. In order to look for backward-
depletion flattening similarly to the well-known bright op- traveling wave solutions of Eqgl), let us change to the
tical NLS (nonlinear Schidingep soliton [18], where com-  frame moving in the backward directigf=x+Vt,7=t,
pensation is achieved between the linear group-velocity dis- _ _
persion and the nonlinear Kerr effect. [0+ (14 V) ]Bp=—EsEa By,

Backward-traveling three-wave solutions

In Sec. IV, we shall determine a stability criterion for _ *

’ ; : \ 9.+ (V—1)3,]Es=E E* — ueEs, 3
such structures by using an extension for this unbounded [0:+(V=1)9c]Es=EpEa — nss @
problem of the Kolmogorov, Petrovskii, and Piskur(&iPP) [9.+Va,|E,=EE% — u,E

T (I=a= Epks aka-

asymptotic procedurel9] used for the initially bounded case

studied in paper ﬂl_O]. It will be shown that the suquminpu§ Defining theA, fields as

attractor obtained in cagé) also belongs to the set of dissi-

pative soliton solutions for unbounded conditions. Ap=11+VI¥E,,  As=|V-1|"Eg, A,=|V|YE,,
Finally, we present(a) experimental results in a cw- (4)

pumped Brillouin fiber-ring cavity showing trains of dissipa-

tive solitons at different velocitieghaving different slopes ~ and looking for stationary solutions in the new frame, which

(b) numerical simulation of the dynamics in such a cavity intreduces the PDE problem to an ordinary differential equation

order to point out the resemblance to the studied unlimitedODE) dynamical system, we have

interaction, andc) a classification schem@ummary of the

different dissipative three-wave solitary solutions. IxPAp= ~S1AA = S1PpAp,

— *
Three-wave dissipative model IxAS=S2hpha ~S2p s ©
We deal with the space-time dynamics governed by the IxAa=S3ApAS —S3paAa,

three-wave coherent model, relevant for instance in single-
mode optical fiber§9,4]. The nonlinear resonant SBR8r ~ Where X={¢/|(V—=1)(1+V)V|Y2 pp=pwu,|V—1|"qV[*7
SRBS process couples, through electrostriction through 11+ VIY%  and  ps=pug 1+ V[¥4V[*|V-1]*2  and
optically induced polarizability variationsa pump wave and  Pa=#al1+V[*IV=1[YF|V|% ~ and  s;=sgn(1+V),
a backscattered Stokes wave of complex amplitude§2=sgn(V—1), and sz=sgn(V). Since u,~us<u, and
Ep(wp.kp) and Eg(ws,ks) to a material acoustic waver ~ V~1 we also havg,<p,, butps andp, are of the same
polarizability wave E,(w,=w,— ws,ka=k,+Ks). Neglect- _order; t_hen_ we can neglf_ect the electro_magnetlc pump damp-
ing the material wave propagatigsincec,<c for SBBS, it ing, which is necessary in order to define a local three-wave
yields, through the slowly varying envelog8VE) approxi- traveling solution5]. Moreover, for the pure resonant prob-

mation, the three coupled equations in dimensionless uniteMm, the relation between the three phases remains fixed and
(4], the whole dynamics is governed by rdgl or A, fields, the

negative amplitude standing formaphase shift.
(d¢+ dx+ up)Ep=—EgsE,,
Il. DISSIPATIVE SYMMETRIC THREE-WAVE SOLUTION

_ _ *
(0r=0xt s Bs=EpEy @ First, let us recall the dissipationless c#$8,14], which

has been integrated by the inverse scattering transfbin
(0+ pa)Ea=ELES, The concept of self-induced transparency has been associ-
ated with this soliton solutiofFig. 1(a)], because all the
where the envelope amplitud&s, the timet, the spacex pump is reconstructed after the interaction. This self-similar
variables, and the damping rateg are normalized to Stokes pulse travels at any superluminous velocity. In order
the constant pump inpuE., and to the SBBS or SRBS to introduce the family of dissipative traveling wave struc-
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FIG. 1. Symmetric three-wave soliton solutiof@ Total self-
induced transparency: nondissipative=0) IST integrable soliton
solution. (b) and (c) Partial self-induced transparency: dissipative
soliton solution[Egs. (10)]. (b) The pump wave exhibits a phase
change @< ‘—11), and(c) the pump wave is weakly depleted without
changing its phasea> 3).

tures, our starting point will be the only known analytical
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case: the pump wave being partially restored with an oppo-
site phase after the interactipRig. 1(b)]. A property of this
structure is then the possibility for the pump wave to change
its phase, which is the key argument for the following sta-
bility discussion. When the Stokes and material waves are
heavily dampeda> %, the pump is weakly depletefFig.
1(c)] without changing its phase.

Before describing the continuous family of three-wave
dissipative solitary structures whose nonlinear dynamical be-
havior is obtained by the numerical treatment of Ed$.for
any dissipation and any initial wave-front slope conditions,
let us look at the stability of the superluminous symmetric
soliton solution.

Instability of the symmetric solution
Pitchfork bifurcation

We show here how this symmetric coherent structure de-
cays through a cascade of bifurcations toward a turbulent tail
structure for small dissipation, when the transmitted pump is
strong enough to stimulate the Stokes and material waves
again. We study the stability of solutiof7) satisfying the
ODE system(5) and being a particular traveling solution of

superluminous soliton solution in the presence of dissipativéhe PDE(1), by looking what happens in its neighborhood.

Stokes fus#0) and material ,#0) waves[5]. This par-
ticular solution of systen(5), is here calledymmetri¢ since
it is obtained for

Ps=Pa=p; (6)
and is given by
Ap=—AtanPAX+p, AZ=AJ=AsectAX, (7)
where the limit conditions [Ep({——>)=1 and
Esa({— —<)—0] determine the constant
A=(1+V)¥2—p, tS)
and fix the velocityV =V ¢, as a function of fu,,us),
Vo= T T ®
Mgl g

Let us write thissymmetricsolution of slopepgym in the
variables of Eq(1):

Ep: (:Uvsl/va)l/z_ [1- (/J'S:U'a)llz]tanr[ psym(x+ Vsymt)]-

Es= Sseclh psyn{x"' Vsymt)]a (10
s 1/2
Ea= S(E Secmpsym(x'l'vsymt)]-
where
S=[1-(msua) 1/2][2(/"@//"«5) - 1]1/2psymv
(1 (pspa) VA1 — psl py)
- (sl pa)™ (1D

In the presence of weak dissipation= usu,<3), the

behavior is reminiscent of the self-induced transparency

Defining

pa=p+el2,

ps=p—e€l2,

with e<p and 20=p,+ps, We can linearize Eq¥5) (with
s;=1 fori=1, 2, and 3 becaus¥,,,>1) around the ana-
lytical solution

AIX)=A(X) + 8(X), (12

where §;<A? andA? (i=p,S,a) are given by Eq(7). In-
troducing Eq.(12) into Eg. (5), defining §= 65— 6,, and
subtracting the last two equations of systés) we obtain

Ix8=— 8(AJ+p) + €A,
whose solution is
8(X)=eK(X)exp( —2pX)cosHAX), (13

and whereK(X) is the following positive function:
X
K(X)=Af exp(2px)seck(Ax)dx.

The two main points here ai@ & has the same sign as
€, and(ii) for largeX (but not too much in order to remain in
the linear regimgthere is an exponential dependencedof
with X,

S(X)xexp A X), (14

where N\, obtained
a= iy, IS given by

.

from expressions(6)—(8) with

a 12
— . Q=

Q¢

1

9 -

(15
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N '
[ t=1500 ]
%'n 250 | ]
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x+t 0 0.06 0.08 01 Ol 012
LA B B B A B L LA [ o= g Ma
t= 0 /\ ]
AL ] FIG. 3. Distance between the two pulses composing the bisoli-
L E (x.) Es(x,t)/4l\ ] tary structure of Fig. 2 vs dissipatianresulting from the numerical
t=500 “r E(x.t) . dynamics (continuous curveand from the analytical expression
N (16) (dashed curve
t=1000 T
JK\\ ______ 1 ates a change of sign for the Stokes wave. The symmetry
I Ags=A, available for anyae> « is now broken. These prop-
t=1500 \ erties are the characteristic features of a pitchfork bifurcation
I B s = = e where the order parameter &&= 65— 8, and the control pa-
P S P I . rameter isa. Therefore, fora<a., the symmetricsolution
20 25 30 35 40 is unstable and the nonlinear spatiotemporal dynamics re-
x+t veals an interesting class of stable bisolitary solutions.
FIG. 2. Space-time evolution of the symmetric three-wave soli- Distance between two pulses: critical behavior

ton solution for small dissipation u(,=3, ws=3%X102, and
a=9Xx10"2) obtained by numerical computation of Eq$) in the
comoving Stokes framé&=x+t, giving rise to an asympotically
stable bisolitary structuréa) p,>ps, the material envelope exhib-
its a w phase change for the second pedX; p,<ps, the Stokes
envelope exhibits ar phase change for the second peak.

A parameter which characterizes the bisolitary structure is
the distancal between the two pulses and, as we can see in
Figs. 2a) and 2b), it is conserved for every time. In fact, it
characterizes the growth rate of the instability as is shown in
expression(14). This distance is therefore proportional to

A
For > a., the perturbation is exponentially decreasing: the
symmetricsolution is stable. Otherwisey,>0 for a¢<e., 1
and the Stokes and material wave trajectories exponentially de 1—(alag)™? (16)

diverge at the rear part of the pulse. This result has a simple
physical interpretation: the pump wave is reconstructed wit

. e . = i i
an opposite phaseat-<}), and it is able to sumulate once 4 20 ter 18 P NS S 2t T ined
again the Stokes and material waves. J : P

We look at the nonlinear evolution of this instability until at infinity. This critical behavior of the ODE system is in

. : : ! : xcellent agreement with the numerical simulation of the

ES saturanon by numgrlcally solving t_he spatl_otemporal PDE‘lfnonlinear PDE system and we plot both determinations
gs. (1) in the comovingEg frame (¢=x+t,7=t), follow- d—d in Fia. 3

ing the characteristicf20,9,10 and using a standard four (a) in Fig. 3.

order Runge-Kutta algorithmisee Appendix A Starting

from the unboundedymmetricsolution, after a transient,

two asymptotic stable traveling wave structures are reached As the damping terma decreases, the pump wave—

[Figs. 2a) and 2b)] corresponding to the two possible ways having generated the second Stokes-material pulse—may be

of developing the instability depending on the signeoin sufficiently reconstructedwith two consecutivew-phase

Eqg. (13). If €>0, thends>46,, and the effective material shifts) in order to stimulate again a third pulse, the process

wave dampingp, is greater than the Stokes ones  repeating for smaller values af. Therefore, a set of peaks

(pa>ps), accounting for the phase change of the materiamay be stimulated in cascade until exhausting the pump. A

amplitude[Fig. 2(a)]. The instability is saturated by exciting linear stability analysis, assuming the peaks to be indepen-

a second Stokes-material pulse. Otherwisep i ps, the  dent of each other, yields the following formula for the criti-

second pulse is also generated with opposite phases betweeal value necessary to stimulate the{1) multipeak struc-

the Stokes and material envelog€sy. 2(b)], but now oper- ture:

Cascading towards turbulence
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i Es(x,t)/2 ]

M t=3000 A 1 [ t=150 E,(xt) /\/\/\_\
= v

[t=350

i Eg(x,t)/8 5 Eg(x.)

Ep(x,t)

x+t
X+t

FIG. 4. Space-time evolution of the symmetric three-wave soli- FIG. 6. Space-time evolution of an initial Stokes condition hav-

- - . _ _ . . . . _ _ _2

ton solution for smaller dissipation than Fig. 2ug=1, 'M92a slop?g—q.9p§ym—7.45 with dissipation g,=1, £s=10"%,
us=10"3, and@=10"3), giving rise to a multipeak turbulent-tail and «=10°) yielding a traveling multipeak three-wave structure.

structure.(The characteristic time for SBBS is nanoseconds. . . .
stable fixed point O (corresponding toEp,=1, and

Es=E,=0), after achievement of the first loop it is not pos-
:;2, (17)  sible to predict the next ones. In fact, this sensitive zone
(2n+1) related to the hyperbolic poir® will split the trajectories

towards eithe©O’ or O”, which are the two branches result-
wherea, ; is the critical value of the pitchfork bifurcation. ing from the pitchfork bifurcation. Thé&; fields becoming
Therefore, just belove, ,, the (n+1)th pulse is excited at turbulent, we cannot predict how many peaks will be posi-
infinity and will rejoin then-peak structure for<a. , fol-  tive or negative in the Stokes or material spatiotemporal evo-
lowing the critical behavior expressed in Hd6). A typical  lution until the dissipation ends to contract the rear part of
evolution of the symmetricsolution for small enoughw  the structurgFig. 4).
(ma=1; us=103) is plotted in Fig. 4. The Stokes envelope ~ We may point out in Fig. 4 thagymmetricsolutions seem
exhibits a set of large peaks, but no steady solitary behavide escape from the turbulent tail of the structure. This behav-
is reached. We can interpret this dynamics in the phase plarier is very evident as we approach the nondissipative inte-
representatiorfwhere a two-dimensional projection is sche- grable problem ¢=0) where superluminous solitons leave
matized in Fig. 5 the distortion and spreading of the trajec- from the radiative envelopentpulse-type structujepropa-
tories are related to the homoclinic orbit corresponding to thegyating at the light velocity21], the word “radiation” here
analyticalsymmetricsolution[Eq. (7)]. Starting from the un- being opposed to “soliton.” Thereforeweak dissipation
traps the radiation leading to turbulent-tail solitary struc-
tures.

den

T — T . ASYMMETRIC THREE-WAVE DISSIPATIVE
1 t = 9000 | SOLITONS

500
——

- In Sec. Il, we explored the spatiotemporal behavior for
] any damping valuey, still remaining in the vicinity of the

] symmetricsolution [Egs. (7) and (10)], which satisfies Eq.
AL T (6), characterized by its wave-front slopg,, (11) and its

' /’ o | velocity Vgm (9). This solution being the only localized

8,E4(8)
0

backward-traveling three-wave structure in the dissipation-
] less cas¢13,14), our aim here is to show how the damping
. reveals a family of asymmetric solitary structures when con-
] dition (6) is no longer verified. Moreover, even for small
. L o o damping values¢<a., p# psym), the Stokes and material
50 0 50 trajectories in the phase plane representation swerve from the
E, (6) sensitive homocli.nic orbitFig. 5)3 which caus_ed turbulence,
and a steady solitary attractor is once again reached. As an
FIG. 5. Phase plane representati@tokes amplitude and its €Xample, in Fig. 6 we plot the numerical space-time evolu-
derivative vs parameteré=x-+t, showing the sensitive zone tion for an initial Stokes condition having a wave-front slope
around the hyperbolic poin®. Starting from the unstable fixed P=0.9gym (@=10"%<a), yielding a steady multipeak
point O, the plot of the trajectories is stopped after few right loopsStructure. This modulated profile is progressively smoothed
(towardO’) and one left loop(toward O”), the two branches of a as the initial wave-front slopp deviates from the symmetri-
pitchfork bifurcation. cal valuepgym. Typical shapes of solitary structures, for dif-

-500
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4 i 1 " I
b) p=8.5
3 L J
10 | .
2
1 ST T
0 .
0 \,r‘~ ==
-1 ) 1 . 1 . L . I . |' A ] . )
0 2 4 6 8 0 2 4 6 8
) 1 ' I 1
¢ E
=9
i S n psym
10 | -
5 |- -
E,
Ep N
0 -\
1 1 ]
0 2 4 6 8
) 1 T T
K3
6 L P =80 ]
#ES /10
4 -
2 b -
0 ! 1o ] L
8 0 0.5 1 1.5 2

FIG. 7. Asymptotic dissipativey,=1, us=10"2, a=10"2) three-wave structures for the followings<p, andp< Psym: (@ p=2, (b)
p=8.5, and(c) ps=p, andp=pgym=8.91. ps>p, andp>pgyy,: (d) p=35 and(e) p=80.

ferent wave-front slopegp, and a fixed damping value obtain a narrowed pulsgFig. 7(d) and Ae)] with a corre-
a=10"?<a,, are plotted in Fig. 7. All these solitary struc- sponding smaller velocity. In fact, the velocity can even be
tures prove numerically stable in the asymptotic regime, likesubluminous.

that shown in Fig. 6. Fons<p, [Fig. 7(a) and 7b)], we note In order to summarize the complex spatiotemporal dy-
how broad and flat the Stokes envelope is compared to theamics, the domain of stability is schematized in tpea
symmetricsolution [Fig. 7(c)]. The resulting slopep, is  plane[Figs. §a) and 8b)]. Figure &a) roughly shows the
smaller and the corresponding velociywill be greater, as domain of stable one-peak dissipative solitary structures
we shall see in Sec. IV. On the other hand, fgK ps, we  (a.<a<1) and the domain of multipeak turbulent-tail
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a) p with X={¢/ug and = ugu, . Introducing the change
lp=expW—1/a), (20
Eq. (199 verifies
dw
| stable solitry la=~ g% @D
wm | structures thresold . ]
| and the equations systef9a and (19b) is reduced(see
\ Appendix B to the integral
| dw
| — =expN—aW, (22
0 a.=19 1 o dz

where  7=2X exp(—l/a)}, and the constant
a=a exp(lk) is determined by the Ilimit condition

I ,(X— —=)=1. Equation(22) is of the separation of vari-
ables form, but no analytical solution is available. It may be
easily integrated by a numerical Runge-Kutta algorithm. For
a>e, (i.e.,, for the localization threshold condition
a= uga<1), we obtain two finite values o/, sayw,; and

o W,, solutions of

expV—aW=0 = (W,,W,) for a>e,

0Lc,n = Q2n+1)?

where all the derivatives oW vanish for »— =, For
[o(X——2)=1 we haveW,=1/a. Knowing W=W(7),
Eqg. (20 yields a traveling localized structure of the kink

FIG. 8. Stability domain in thef,«) plane:(a) Whole instabil- .
ity domain (@<1), where stable dissipative asymmetric structuresform for p: and from Eq(21) of the asymmetric pulse form

are formed,(b) magnification of the region of small dissipation for I, andls,

(a<ac=3) where single-peak solitarySS, multipeak solitary _ dwdy

(MS), and multipeak turbulent structureE)(are formed, depending la=— d7 dX 2 exp — la)(expV—aW), (23
on the nearness with respect to the symmetrical wave-front slope "

psym- | s= 2 2a, (24)

Ms
structuregshaded region: € a<a,). Figure &b) is a mag-

nification of the last region showing the stable one-peak soliwhich are represented in Fig(&). The maximum ofl,,
tary structure domain, and the multipeak structure domaimbtained fromdl,/dX=0, atW, n.=a, is given by
itself containing the time-dependent cascading arégs ( la ma=2a(INa+1a—1), (25)
where the multipeak structures are accompanied by turbulent '

tails. These areas become thinner and closer together, agnd the maximum of the Stokes pulsg [obtained from
cording to Eq.(17), as the dampingr decreases, until they dis/dX=0, at Wgpna, solution of  exVs max
constitute a foliated zone in the vicinity ef=0, to whichis = (1+a)Wg /2], is given by

associated a turbulent tail. 1
|smm=5;?uﬂ—exq—2hwnNgmM. (26)
Luminous backward-traveling three-wave solution S

For the particular case of the three-wave backwardFor example, let us taker=pusu,=0.625; then we have
traveling solution at the velocity of light{=1), the nonin- a=«a exp(lek)=3.095 64 W,=1/a=1.6,W;=0.5724, and
tegrable three-wave PDE equation syst@nreduces to the |p({— +)=exp(W;—W,)=0.3578, which are in perfect
problem of two ODE equations which we are able to inte-agreement with the space-time numerical simulation of Egs.

grate. Indeed, the second equati@h yields (3), namely,Ep({—0o)= I y({— +2)=0.5983.
E E* Even if this luminous solution is a particular one, it turns
Es= e, (18  out to be one of the most interesting attractors, since we can
Hs approach it in an actual Brillouin fiber-ring experiment, as

and we obtain a two-equation system for the pump and ma~e shall see in Sec. V. In Fig.( we show the three-

= . . — _2 _ .
terial wave intensities I(,,a:|Ep’a|2), where the Stokes amflgidleo,lg)m:S()Susci;;%cwi:ﬁ ;ﬂaact%ZIlgx er(ix Z nt3 '
wave plays the role of a slave variable, Hs= ' P '

%: — 1.1 (199 IV. STABILITY CRITERION: ASYMPTOTIC PROCEDURE
dX pra

In Sec. Il we showed the existence of a family of asymp-
totically stable three-wave dissipative solitary structures

whose velocity can be superluminous or subluminous de-

di,

T =2lpla2al,, (19h)
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. T . . . front edge of the whole three-wave steady structure remains
in the linear undepleted pump regime every time.
Al L. = Ip1a Thus, assuming an undepleted pump waug,<1)
S~ ul | throughout the whole linear interaction range, from Hds.
we obtain the linearized equation set
(9t= dxt pus) (91t ma)Esa=Esa, (27)
2F ]
W, = la W w whose characteristic equation for an exponential dependence
~\ lp=¢ 2 0w [Esa exp (yt+px)] reads
o — N (y=p+us)(y+ua)=1, (28)
. . Ia°c, ~dwldn . , where we only keep the unstable rg&ey>0)
! 18 : 25 3 35 P—pa—ms  V(p+ua—pg’+4
(@ n V= > > . (29

The solution of this linear problem may be given by means
of the Fourier transfornfwith p= —ik andk complex:

Esa(X,t)= f xxEs,a(p)exmy(p)t)exr(px}dp

WhereESYa(p) is the Fourier transform of the initial condi-
tion Eg 5(x,t=0). Let us look for backward-traveling waves
with velocity V,

{=x+Vt,
yielding

Esal{)= fCEs,a(p)eXF[ y(p)—pVI]t exp(pg)dp.
(30

This linear solution holds for long times allowing us to
obtain the asymptotic behavior of the far pulse wave front,
where the linear undepleted pump approximation always re-
mains valid. As a result of the parametric instability, the
asymptotic wave front structure grows exponentially. Since
we are interested here in characterizing the whole family of
pending on the wave front sloge of the backscattered or backward-traveling wave structures, we will only consider
material wave. An explicit solution for the particular inte- the exponential head-front dependence; then the correspond-
grable luminous velocity case has also been given. The obing Fourier transformEs ,(p) has a pole. Moreover, the
ject here is to determine the stability criterion for all thesefunction f(p)=+y(p)—pV has a saddle point, and the inte-
structures by using an extension of tteready used10]) gral can then be performed by the steepest descent method.
KPP asymptotic procedufd9] for this unbounded problem, Therefore, it may be showsee Appendix ¢ that the pole

in order to find the long term evolution of initially un- asymptotically dominates over the saddle point for any slope
bounded Stokes or material envelopes in the presence of @msmaller than a critical valupy (P<pg). The stationarity

cw pump. The main property found is the existence of aof the three-wave structure in its backward-traveling frame
particular solution(coinciding with the subluminous attractor then imposes

of paper ), corresponding to the minimum authorized veloc- .
ity Vo, which turns out to be the frontier of stability for the V(p)= YP) 1 pstpa N V(pa— ustp)®+4
entire family of backward-traveling wave structures. For de- P p 2 2p 2p

tails the reader can see Appendix C.

Considering that the threshold conditid®) is satisfied . . .
(1sua<1), the Stokes and material waves are unstable, anwhere thee}mphtude velocn_pf the traveling wave structure
exponentially growing in the linear parametric regime. TheiS then defined as the quotient between the temporakfd
instability is then saturated by the pump depletion and théPatial () growth rates. We plot this velocity dispersion
three envelopes self-structure into a solitary wave. For afélation(31) in Fig. 10.
initially unbounded Stokes or material condition, the asymp- In the opposite casp>py, it is the saddle point which
totic procedure analytically determines the velocity and thedominates the long-term behavior, and, following the steep-
slope of the wave front in the linear regime of the undepletec@st descent methd@?2], the supplementary condition is
pump, which turns out to be the value of the velocity in the
nonlinear steady state of strong pump depletion, since the V:[‘M(p)/ap]Fpo' (32

FIG. 9. Luminous three-wave backward-traveling solutica):
Shape of the analytical solution$20), (23), and (24) for
a=0.625.(b) Asymptotic three-waveluminous amplitude struc-
ture for u,=3 andus=3X102 (a=9x10"?) resulting from the
space-time dynamical evolution.

(31)
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slope p 1 15 2 2.5 3
FIG. 10. Velocity dispersion: Amplitude velocity=/p of the X+t
dissipative three-wave structure vs the exponential sjpé the

backscattered wave front showing the stalpiefg,,) and unstable _ _FIG. 11. Space-time eyoluti_on of'an initial Gaussian Stokes con-
; dition. The wave-front tail profile being steeper than any exponen-
(p>psym domains.

tial slope, the solitary structure is attracted by the subluminous

. , (po.,Vo) solution.
The velocity and the head-front slope then become fixed by

Egs.(31) and(32), Balance between velocity dispersion and pump depletion

In fact, this stability problem has a fundamental physical
2 rE— significance. Let us remark upon its resemblance to the well-
_ 2t pam psprat 2V1 Hsta (33  known bright optical NLS solitori18], where compensation

0

4+ (pa— ps)? between the linear dispersion and the nonlinear Kerr effect is
only possible for negative dispersion of the group velocity
(dwlJk). Here, for the three-wave soliton, thenplitude ve-
=i+ _ i_ n \/1_Msﬂa+ V1-pspa locity y/p stands for the group velocity, the linear effect is
Po Ms #s Ma . Ma Mrs the backscattering instability characterized by its growth rate

(34 p, and the nonlinear effect is the pump depletion. Figure 10
shows that the velocity dispersion now depends on the slope

Hence this particular solution, which stands at the bottom of'nSteaq on the wave nL_meer_ for the NLS soljtom our
the V(p) curve of Fig. 10, separates the stabpe<{(p,) and case, If the veloc¢y_ d|sper_3|ona(//&p<0) alllows the
the unstable domaing{ py). Moreover, such a solution is §maller slopes to rejoin the hlghe_r ongince their yeloqty
an attractor for any initial condition having a wavefront slopeIS grgate}, a bala}nce may _be achieved betwqeh)mty d'.s'
> Po. persion steepeningnd nonlinear pump depletloq flattening
Let us finally point out the strength of this method, which This case corresponds to stable soliton SOIUF'OFK Ko)-
allows us to determine the nonlinear stage of the interactioﬁ)therv"Ise b>po;9V/ap>0), both effects act in the same
by simply looking at the linear asymptotic evolution of its way and te.”d to fllatten the threg-wave structure, which
wave front, and characterizes the continuous family of three§.preads until reaching the sublumln_ous .attraclm,‘(/o),
wave solitary attractors analyzed in Secs. Il and Ill. In ordedVeN by Egs(33) and(34), and described in paper I.
to test this statement with an additional example, we consid-
ered an initial Gaussian condition for the Stokes envelope. V. BRILLOUIN FIBER-RING LASER PULSES

The slope of its frontal tail being greater than any exponen- Thg present theoretical study of an unlimited interaction is
tial one, it is expected from this theory that only the saddle,gefy to enlight the nonlinear dynamics in a cw-pumped

point contributes to integral30); the numerical evolution gijqyin fiber-ring laser, where solitonic pulses are obtained
confirms this behavior and the corresponding fundamentglgiow a critical feedbaclR,; and interpreted via a Hopf

subluminous attractor is asymptotically reackigdy. 11). bifurcation process from the steady Brillouin mirror solution
The reader may now ask: How could an initially boundedrg;
condition(paper ) yield the same asymptotic solution as that ™ "\y/e performed long-time numerical simulations of Egs.

obtained for a particular subluminous case of an initially(l) for a ring configuration of length corresponding to the

unbounded condition? This can be possible due to the Subsneriment of Ref[6], with periodic boundary conditions
luminous velocity of the structure formed from the initially ¢, the Stokes wave

bounded condition, since it becomes asymptotically decorre-
lated from its luminous tip of the foot at the beginning of the  E,(x=0})=E.,=const, Eg(x=L,t)= \/ﬁEs(xz 0t)
interaction. (35
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FIG. 12. Backscattered asymptotic pulses at the output of the
Brillouin fiber-ring cavity of Ref.[6], obtained from numerical in- I
tegration of Eqs(1) with boundary condition§35) for a SBBS gain
lengthG=gLl.,=8. (a) Superluminous regimeAt/t,=0.99933,
V>1) corresponding to a Stokes intensity feedbRek0.0225.(b)
Subluminous regimeXt/t,=1.00189,v<1) for R=0.0196.
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FIG. 13. Experimental recording of different trains of solitary
Stokes pulses at the output of the 250-m fiber-ring cagitfiose
characteristics are given in Tablg dorresponding to a feedback
nearR.; and a gain length of abo@=4. (a) The shape presents a
in the solitonic feedback rang&{,es<R<Rgit), and in Fig.  great resemblance to the asymmetric luminous dissipative soliton
12 we plot the backscattered asymptotic pulses at the outpghown in Fig. 9b). (b) Comparison of two superimposed trains of
of the ring cavity. Each pulse corresponds to one round trippulses in order to show that the lower slopes correspond to the
and the distance between them measures the mean round-tfster train, as predicted by the theory.
period At normalized to the photon round-trip time
t,=nL/c. We can see that both slightly superluminousMoreover, the widthét of the pulses, which is inversely
(At/t,<1) and subluminousAt/t,>1) regimes are avail- proportional to the exponential slope, is narrower for
able for the same configuration, by varying the feedbaclsmaller velocities in agreement with the dispersion curve of
control parameteR for the same gain lengt®=gLI,=8. Fig. 10.

TABLE |I. Computation parameters for the Nd-YA@ttrium aluminum garngtcw-pumped Brillouin
fiber ring laser. The active medium is a single-mode optical-fiber of lengd?50 m, with a 11.3-
um-diameter Ge-doped corad=1.44), and effective optical cross sectir 10" ° m?. The pump wave-
length isA=1.319 um (acoustic wavelength ,=0.43 um). The coherent SBS coupling constant entering
the normalization of Eqs(1) is given by K= (1/0) [(£0cnf)/(2poCa) 1¥A(mp1p/N)=17.8 mst V1,
whereo= /2 is the depolarization factoP is the pump power coupled into the fioeg=P/S is the pump
flux intensity, G=gLI, is the dimensionless SBS intensity galn lenfri 4K 2/ (y,£4¢2)], E, is the pump
amplitude corresponding td,= (nosoc/2)|Ep|2, T= (KEp) is the coherent SBS characterlstlc time,
a= Va7 is the dimensionless acoustic damping rajg= 7Av=6.94X 10’ s 1), ue= 7, is the dimen-
sionless optical damping ratey{=9.35x 10° s, spatial intensity attenuationngy,/c=0.39 dB km 1),

Reit=113 exp(G/3)—2] is the critical Stokes intensity feedback for pulse formatifd], and
Rinres= €Xp(— G) is the laser threshold feedback.

P[mw] 34.7 69.5 104.2 139 173
I o[ MW/ cm?] 0.0347 0.0695 0.104 0.139 0.173
G=gLl, 2 4 6 8 10
Ep(MV/m) 0.427 0.604 0.739 0.855 0.954
7=(KE,) }(ns) 131 93.0 76.0 65.6 58.5
o= VaT 9.09 6.45 5.27 4.55 4.06
o= VeT 1.2x10°3 8.7x10™* 7.1x10°4 6.1x10 4 5.4x10 4
Rerit 0.26 0.106 0.049 0.024 0.012
Rinres 0.13 0.018 0.0024 3104 45x10°°
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Experimental results dissipative soliton shown in Fig.(8). We can measure a
time width 6t=0.153+0.004 s, which is inversely propor-

o ! . ) . tional to the exponential slope, and a mean round-trip pe-
formed additional experiments in another cw-pumped Bril riod of At=1.087+0.004 us, which is inversely propor-

louin fiber-ring cavity, the experimental setup being the samg;, 5| 16 the velocity. In order to compare better the different
as in[6], and the characteristics given in Table I. In Figs. .qnd-trip periods for different slopes, controlled in the ex-
13(a) Qnd 13b) we plot the experimental recording of differ- periment by varying the feedback betweRg, andRyes, in

ent trains of solitary Stokes pulses at the output of the 250-ngjg. 13b) we show two superimposed trains of solitons. We
fiber-ring cavity. Figure 1@ shows a pair of solitary pulses remark that the lower slopes correspond to the faster train.
for a feedback just belowR.;;, and a gain length o6=4  Subsequent study must be done in order to understand the
(P=70 mW) corresponding to values of column 2. Their whole nonlinear dynamics in a lossy fiber-ring cavity, but the
shape has a great resemblance to the asymmetric luminopgesent results are highly encouraging.

In order to test the universality of our results, we per-

VI. SUMMARY: PARAMETER'’S CLASSIFICATION SCHEME

a p \% Pa Ps Dissipative three-wave soliton solutions
0 >0 >1 0 0 IST integrable total self-induced transparency 3-
soliton solution
0 >0 >1 >0 0 integrable full pump-Stokes conversi@amped pen-
dulum)
>0 >0 1 integrable particular luminous solutiéone peak
<a.=1% Psym Vsym Ps Pa integrable unstable solution
=Psym = Vgym =pg =p, nonintegrable chaotic structure
<ag <Psym =Vsym =pg =p, nonintegrable attractor, multipeak traveling structure
(in phase
> Psym = Vsym =pg =pa ibid. (alternate phasgs
<po >V, *ps #* pa nonintegrable attractors from

multi-peak to one peak struct.

>po —Vy <pg >p., non-integrable unstable evolving
to (po, Vo) attractor

;=3 =Psym =Vgym =pg =p, pitchfork bifurcation
(cf. section 2.1
>a,=3 Psym Vsym Ps Pa integrable stable one peak
attractor
<pg >V, #ps #Pa non-integrable attractor one peak
>po —V, <ps >pa non-integrable unstable evolving

to (py, Vo) attractor

VIl. CONCLUSION ing justified by an extension of the Kolmogorov, Petrovskii,

We found a continuous set of asymptotically stable superg;tnd Piskunov asymptotic procedure to this unbounded prob-

luminous and subluminous dissipative three-wave solitary atM- This dissipative soliton family completes the known
tractors for the initially unbounded Stokes problem in theSuperluminous symmetric soliton solution and is in agree-
presence of a continuous pump wave, dependent only on tgent with optical Brillouin fiber-ring laser experiments.

wave-front exponential slopp of the backscattered Stokes Moreover, the symmetric soliton solution, is proved to be
envelope. These dissipative three-wave solitons result froranstable for small dissipation exhibiting a turbulent multi-
the dynamical compensation between negative velocity dispeak tail,via a cascading process from the stable bisolitary
persion ¢V/9dp<0) and pump depletion, their stability be- structure, with the dissipatiofdamping as the control pa-
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rameter. This turbulence limits the analytical perturbative ap=/" /2. Then at each step of integration the pairwise values
proach[17] obtained fora<1 to a description for the short Z! are incremented according to the Runge-Kutta algorithm,

time evolution. while the odd ones are calculated by four-term interpolation

using the pairwise valueg!,. This procedure proves to be
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comments and help in this work. From Eq.(198 we havel,=—1//l,, where the prime
stands for the derivative with respect ¥ Differentiating

APPENDIX A once more and eliminating, from Eq. (190, we obtain a

Let us consider the nonlinear space-time evolution of the!0Sed second order differential equation fgg
three-wave system governed by E@b. for an initially un- a1/
bounded Stokes conditidis(x,t=0) exponentially decreas- _{ ( Pl _21 +24lnl
ing atx— —o, and counterpropagating with respect to the dX[\1p P P
continuous pumpE,(x,t=0). Since we are looking for so- ) ) -
lutions localized in the vicinity of th&g characteristic, it is Introducmg the change I,=expJ, which satisfies
natural to reduce the problem to the initial-boundary valugdY/dX=1/1,=—1,, Eq. (B1) is reduced to a first order
problem in the comovingEs frame E=x+t,7=t), where differential equation
Egs.(1) read

=0. (B1)

du
(f?r+2‘7§)Ep:_EsEa1 d—x=2 eX[IiJ—ZaU+C,
(d,+ ng)Es= EpEg , (A1)  whereC is a constant that can be removed with the change

{[W=U-C/(2a); n=2X exd C/(2a)]}, yielding
(9,4 s+ pma) Ea=EpES,

dw
with the initial conditionEg(¢sechp¢),r=0), and supple- dn =expV—aW, (B2
mented boundary conditions &t0, E,({§=0,7)=1 and
_ _ _ and where the constami= « exg — C/(2a)]= a exp(lk)
Ea(£=0,7)=[Es(§=01)/2][ =P~ pat ps is determined from the limit conditiorl ,(X— —)=1.

+ \/4+(Ma— st p)al. Equati_on(BZ) is_ of_the S(_eparation of variable_s f_orm, but no
analytical solution is available. It may be easily integrated by
It is convenient, for numerical integration, to remove thea numerical Runge-Kutta algorithm.
space derivatives from Eg6Al) by introducing other func-
tions Z;(&,7) defined by APPENDIX C

Z,(&,1)=Ep(é+21,7), The basic equationgl) linearized in the parametric
(Ep=1) regime are
Zs(§,1)=Es(£,7), (A2)

Zo(&,7)=Eq(§+7,7). . . .
whose characteristic equatioinik) for an exponential depen-
Then theZ;’s obey the following nonlocal equations dence[Eg > exp (yt—ikx)] reads

(9t dx+ mg) (9 + ua) ES,a: ES,aa

3,Zp(§,7)=—ZE+27,7)Z5(E+ 7,7), (y+ik+pug) (y+ uma) =1. (C1)
(0, me)Zo(&,7)=Zy(E—27,7)Z(E—7,7), (A3) The solution is then given by means of the Fourier transform

(‘97+ Iu'a)za(gl T) = Zp(g_ T, T)ZS(EJF T, T)-

Discretizing thef variable(throughé;=j#), we obtain a set
of functions Z!, obeying ordinary differential equations. wherek is a complex number, and
These equations will be considered to depend explicitly on '
time through the spatial arguments of ti@é functions, -
namely,é+ 7, £+ 27. We can then apply a standard Runge- Esa(k)= f_
Kuttta algorithm to the numerical integration of these equa-

tions. However, we must consider the stability of this algo-| ooking for backward-traveling waves with velocit,
rithm. It is known, in the case of PDE describing

counterstreaming wave interaction that a numerical instabil- z=X+Vt,

ity occurs when the spatial step is larger or equal to the

temporal steps,. We have therefore been led to uge the solution is written

ot+ic

Esa(X.t)= f  Esalkyexp(—ikxexd y(kjt]dk,

—o+lo

o0

Esa(x,t=0)expikx)dx.
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X with
PO IpoIMES,a(k:ips)exqf(k:ips)t]exqpsz)-

and

g |sad (17 ) V% o(k=ipo)exil f(k=ipo)tlexp(po2).

Y

I

Since the real part of the functidifk) has a minimum along
the imaginary axis, the long-time behavior will be dominated
by the pole. The corresponding stationary condition is then
written

k
vig=i 1, (€3
FIG. 14. Contour in the complek plane.

otio which describes a continuous family of stable solitary struc-
Esa(zt)= f Esa(k)exd y(k)+ikV]t exd —ikz]dk,  tures whose velocityFig. 10 is only dependent on the wave
—wtico front slopeps.
(C2 (b) ps>po: In this case, the pole can no more contribute
to the integral since all the singularities must lie inside the

where Eg 4(k) is the Fourier transform of the initial condi- upper half-plane contour. Following the steepest descent

tion. This linear solution holds for long timés allowing us method[22], the supplementary condition is

to obtain the asymptotic behavior of the far wave front of the

pulse. In order to compute this integral, we remark, on the V=[3y(K)/oK]xor.;

one hand, that the real part of the function 0

f(k)= (k) +ikV has a saddle point &=ipo (Po b€iNg  the velocity and the head-front slope then become fixed by

rea) that is maximum along the re& axis and minimum (C1) and(C3),

along the imaginary axis. On the other hand, because of the

exponential wave-front dependengg ,(x) xexp(psx), the 2+M§—Msﬂa+2m

corresponding Fourier transforrks,(k) has a pole at Vo= 2+ (a9 '

ks=ips (ps being real. Two cases must be then analyzed. Ha—Hs
(@ ps<po: The contour in the complek plane, which

may be chosen, is shown in Fig. 14; therefore, for long-time po=i+ﬂs— i_Ma+ V1-psua n ‘/1_'“3'“3.

interaction, the integrdlC2) can be written as the sum of the Ms Ma Ma Ms

pole and the saddle-point contributions,

Any initial slope conditionpg>p, spreads until reaching the

Esa(Z)=1p0t lsags minimum point attractopg.
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