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Dissipative three-wave structures in stimulated backscattering.
II. Superluminous and subluminous solitons

Carlos Montes,* Antonio Picozzi, and Derradji Bahloul
Laboratoire de Physique de la Matie`re Condense´e, Centre National de la Recherche Scientifique, Universite´ de Nice–Sophia Antipolis,

Parc Valrose, F-06108 Nice Cedex 2, France
~Received 21 June 1996!

Stimulated Brillouin or Raman backscattering of a cw pump into dissipative material and Stokes waves,
governed by the nonlinear space-time three-wave resonant model, gives rise to solitary pulses, which are
experimentally obtained in long fiber-ring cavities. We show that the known superluminous symmetrical
soliton solution is unstable for small dissipation, cascading to a turbulent multipeak structure. A stable single-
peak dissipative soliton solution prevails for moderate dissipation~damping!, and at a lower critical dissipation
operates a pitchfork bifurcation, first yielding a stable bisolitary structure, and then multipeak space-time-
dependent structures. Besides a continuous set of asymptotically stable superluminous and subluminous dissi-
pative solitary attractors, the general nonsymmetrical and nonintegrable case is dependent only on the wave
front exponential slope of the backscattered Stokes wave, in agreement with the solitary pulses observed in a
Brillouin fiber-ring laser. These three-wave dissipative solitons result from the dynamical compensation be-
tween the wave-front slope dispersion and the pump depletion. We give an explicit solution for the particular
integrable luminous velocity case. We also show that initial steep Stokes envelopes~like Gaussian profiles!
evolve to the universal subluminous solitary attractor of paper I.@S1063-651X~97!13301-3#

PACS number~s!: 42.81.Dp, 42.65.Es, 42.65.Dr, 42.65.Tg
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I. INTRODUCTION

Stimulated Brillouin backscattering~SBBS! experiments
in liquids @1#, gases@2#, plasmas@3#, and in fiber-ring reso-
nators@4–6#, and stimulated Raman backscattering~SRBS!
in liquids @7,8#, give rise to localized traveling backscatter
Stokes pulses. The space-time dynamics in one spatia
mension, resulting from the resonant three-wave nonlin
interaction between the pump waveEp , the material wave
Ea , and the backscattered Stokes waveES , is governed by
the nonlinear three-wave partial differential equations~PDE!
model within the slowly varying envelope approximatio
This model is particularly appropriate for describing the d
namics in single-mode optical fibers@9,4#. The three-wave
interaction problem has been the object of many theoret
studies and numerical simulations, to which we referred
paper I@10#.

We are interested in nonconservative SBBS or SRBS
the presence of a continuous pump, which has been i
grated by the inverse scattering transform~IST! in the non-
dissipative case@11#, giving rise to backscattered soliton
Our aim here is to study the nonconservative problem in
presence of material and Stokes dissipation~damping!, in
order to analyze the nonlinear dynamics in a cw-pump
optical-fiber-ring laser, where the periodic round-trip intera
tion in a long lossy cavity may be associated with the n
conservative unlimited interaction. Indeed, it has been sho
in a Brillouin fiber-ring cavity that, above the laser thresho
and below a critical feedback, generation of dissipative s
tary SBBS Stokes pulses@5# takes place from any initia
condition @6#.

*Electronic address: montes@unice.fr
551063-651X/97/55~1!/1092~14!/$10.00
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The main purpose here is to present for this problem
continuous family of dissipative solitary attractors resulti
from the unlimited three-wave interaction of the cw pump
the presence of dissipative Stokes and material waves.
dissipation then introduces the concept of an attractor, yie
ing solitary structures extremely robust with respect, for
stance, to noise perturbations. These attractors suppor
experimental observation of a large variety of dissipat
solitary Stokes pulses in a Brillouin fiber-ring cavity, amon
them the experimental results presented here.

From a theoretical point of view, two kinds of initia
and/or boundary conditions for theEa or ES envelopes will
yield two classes of localized traveling backscattered str
tures.

~I! It was shown in paper I@10# that the cw pump inter-
acting with initially boundedStokes or material wave fluc
tuations yields asubluminousbackscattered three-wave so
tary structure, whose constant velocity is unique
determined by the damping coefficients and the cw-pu
level, and which is a universal attractor for any initial co
ditions in a compact support. ThisCauchy problemof an
initially bounded Stokes wave packet cannot yield a sup
luminous asymptotic traveling structure, since the front
the bounded wave packet propagates at the velocity of li

~II ! Initially unboundedStokes conditions present wel
known analyticalsuperluminous@12# three-wave soliton so-
lutions @13,14#, also available for dissipativeEa andES en-
velopes@5,15,16#. Perturbative IST has been considered
the small dissipation case@17#, but we shall see here~Sec. II!
that the soliton solution is unstable in this case and is acc
panied by a turbulent tail. Such turbulent behavior is reac
via a bifurcation cascade from the stable dissipative o
soliton solution by decreasing the dissipation: it begins w
a bisolitary structure, and is followed by a space-tim
1092 © 1997 The American Physical Society
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55 1093DISSIPATIVE THREE-WAVE . . . . II. . . .
dependent multipeak solitary regime for very small dissi
tion.

Besides this bifurcation scenario of the superlumino
soliton solution, we present the stable family of asymme
dissipative solitons for the general nonintegrable proble
resulting from the unlimited interaction at any dissipati
~Sec. III!. This family constitutes a continuous set of solita
attractors, backward traveling with respect to the continu
pump at velocities running from superluminous to sublum
nous, the dynamics dependent only on the wave-front sl
p of the backscattered Stokes wave~slope-dependent veloc
ity dispersion!. An explicit solution for the integrable lumi
nous velocity case is derived for the first time, to our know
edge. These stable solitary structures, generated by
backscattering three-wave instability, attain their nonlin
steady regime through dynamical compensation between
wave-front slope dispersion and the pump depletion~balance
betweenvelocity dispersion steepeningandnonlinear pump
depletion flattening!, similarly to the well-known bright op-
tical NLS ~nonlinear Schro¨dinger! soliton @18#, where com-
pensation is achieved between the linear group-velocity
persion and the nonlinear Kerr effect.

In Sec. IV, we shall determine a stability criterion fo
such structures by using an extension for this unboun
problem of the Kolmogorov, Petrovskii, and Piskunov~KPP!
asymptotic procedure@19# used for the initially bounded cas
studied in paper I@10#. It will be shown that the subluminou
attractor obtained in case~I! also belongs to the set of diss
pative soliton solutions for unbounded conditions.

Finally, we present~a! experimental results in a cw
pumped Brillouin fiber-ring cavity showing trains of dissip
tive solitons at different velocities~having different slopes!,
~b! numerical simulation of the dynamics in such a cavity
order to point out the resemblance to the studied unlim
interaction, and~c! a classification scheme~summary! of the
different dissipative three-wave solitary solutions.

Three-wave dissipative model

We deal with the space-time dynamics governed by
three-wave coherent model, relevant for instance in sin
mode optical fibers@9,4#. The nonlinear resonant SBBS~or
SRBS! process couples, through electrostriction~or through
optically induced polarizability variations!, a pump wave and
a backscattered Stokes wave of complex amplitu
Ep(vp ,kp) andES(vS ,kS) to a material acoustic wave~or
polarizability wave! Ea(va5vp2vS ,ka5kp1kS). Neglect-
ing the material wave propagation~sinceca!c for SBBS!, it
yields, through the slowly varying envelope~SVE! approxi-
mation, the three coupled equations in dimensionless u
@4#,

~] t1]x1mp!Ep52ESEa ,

~] t2]x1mS!ES5EpEa* , ~1!

~] t1ma!Ea5EpES* ,

where the envelope amplitudesEi , the time t, the spacex
variables, and the damping ratesg i are normalized to
the constant pump inputEcw and to the SBBS or SRBS
-

s
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,
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coupling constant K @Ei /Ecw→Ei , tKEcw→t,
xcKEcw /n→x , g i(KEcw)

21→m i ( i5p,S,a)#.

Backward-traveling three-wave solutions

In order to obtain dissipative traveling three-wave stru
tures, we must assume a constant pump input (Ep51) com-
pensating for the Stokes and material losses. Therefore,
sidering that the threshold condition is satisfied

mSma[
gSga

~KEcw!2
,1, ~2!

theES andEa waves are unstable, exponentially growing
the linear parametric regime, until a nonlinear stage
reached, where the depletion of the pumpEp saturates the
instability. The problem will be to determine the nonline
three-wave solitary structures. In order to look for backwa
traveling wave solutions of Eqs.~1!, let us change to the
frame moving in the backward directionz5x1Vt,t5t,

@]t1~11V!]z#Ep52ESEa2mpEp ,

@]t1~V21!]z#ES5EpEa*2mSES , ~3!

@]t1V]z#Ea5EpES*2maEa .

Defining theAi fields as

Ap5u11Vu1/2Ep , AS5uV21u1/2ES , Aa5uVu1/2Ea ,
~4!

and looking for stationary solutions in the new frame, whi
reduces the PDE problem to an ordinary differential equat
~ODE! dynamical system, we have

]XAp52s1ASAa2s1rpAp ,

]XAS5s2ApAa*2s2rSAS , ~5!

]XAa5s3ApAS*2s3raAa ,

where X5z/u(V21)(11V)Vu1/2, rp5mpuV21u1/2uVu1/2/
u11Vu1/2, and rS5mSu11Vu1/2uVu1/2/uV21u1/2, and
ra5mau11Vu1/2uV21u1/2/uVu1/2, and s15sgn(11V),
s25sgn(V21), and s35sgn(V). Since mp;mS!ma and
V;1 we also haverp!ra , but rS andra are of the same
order; then we can neglect the electromagnetic pump da
ing, which is necessary in order to define a local three-w
traveling solution@5#. Moreover, for the pure resonant prob
lem, the relation between the three phases remains fixed
the whole dynamics is governed by realEi or Ai fields, the
negative amplitude standing for ap-phase shift.

II. DISSIPATIVE SYMMETRIC THREE-WAVE SOLUTION

First, let us recall the dissipationless case@13,14#, which
has been integrated by the inverse scattering transform@11#.
The concept of self-induced transparency has been as
ated with this soliton solution@Fig. 1~a!#, because all the
pump is reconstructed after the interaction. This self-sim
Stokes pulse travels at any superluminous velocity. In or
to introduce the family of dissipative traveling wave stru
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1094 55CARLOS MONTES, ANTONIO PICOZZI, AND DERRADJI BAHLOUL
tures, our starting point will be the only known analytic
superluminous soliton solution in the presence of dissipa
Stokes (mSÞ0) and material (maÞ0) waves@5#. This par-
ticular solution of system~5!, is here calledsymmetric, since
it is obtained for

rS5ra5r, ~6!

and is given by

Ap
052A tanhAX1r, AS

05Aa
05A sechAX, ~7!

where the limit conditions @Ep(z→2`)51 and
ES,a(z→2`)→0# determine the constant

A5~11V!1/22r, ~8!

and fix the velocityV5V sym as a function of (ma ,mS),

Vsym5
1

12mS /ma
. ~9!

Let us write thissymmetricsolution of slopepsym in the
variables of Eq.~1!:

Ep5~mSma!
1/22@12~mSma!

1/2#tanh@psym~x1Vsymt !#,

ES5Ssech@psym~x1Vsymt !#, ~10!

Ea5SS mS

ma
D 1/2sech@psym~x1Vsymt !#,

where

S5@12~mSma!
1/2#@2~ma /mS!21#1/2psym,

5
@12~mSma!

1/2#~12mS /ma!

~mS /ma!
1/2 . ~11!

In the presence of weak dissipation (a[mSma,
1
4!, the

behavior is reminiscent of the self-induced transpare

FIG. 1. Symmetric three-wave soliton solution:~a! Total self-
induced transparency: nondissipative (a50) IST integrable soliton
solution. ~b! and ~c! Partial self-induced transparency: dissipati
soliton solution@Eqs. ~10!#. ~b! The pump wave exhibits a phas
change (a,

1
4!, and~c! the pump wave is weakly depleted witho

changing its phase (a.
1
4!.
e

y

case: the pump wave being partially restored with an op
site phase after the interaction@Fig. 1~b!#. A property of this
structure is then the possibility for the pump wave to chan
its phase, which is the key argument for the following s
bility discussion. When the Stokes and material waves
heavily dampeda. 1

4, the pump is weakly depleted@Fig.
1~c!# without changing its phase.

Before describing the continuous family of three-wa
dissipative solitary structures whose nonlinear dynamical
havior is obtained by the numerical treatment of Eqs.~1! for
any dissipation and any initial wave-front slope condition
let us look at the stability of the superluminous symmet
soliton solution.

Instability of the symmetric solution

Pitchfork bifurcation

We show here how this symmetric coherent structure
cays through a cascade of bifurcations toward a turbulent
structure for small dissipation, when the transmitted pump
strong enough to stimulate the Stokes and material wa
again. We study the stability of solution~7! satisfying the
ODE system~5! and being a particular traveling solution o
the PDE~1!, by looking what happens in its neighborhoo
Defining

ra5r1e/2,

rS5r2e/2,

with e!r and 2r5ra1rS , we can linearize Eqs.~5! ~with
si51 for i51, 2, and 3 becauseVsym.1) around the ana-
lytical solution

Ai~X!5Ai
0~X!1d i~X!, ~12!

whered i!Ai
0 andAi

0 ( i5p,S,a) are given by Eq.~7!. In-
troducing Eq.~12! into Eq. ~5!, defining d5dS2da , and
subtracting the last two equations of system~5!, we obtain

]Xd52d~Ap
01r!1eAS

0 ,

whose solution is

d~X!5eK~X!exp~22rX!cosh~AX!, ~13!

and whereK(X) is the following positive function:

K~X!5AE
2`

X

exp~2rx!sech2~Ax!dx.

The two main points here are~i! d has the same sign a
e, and~ii ! for largeX ~but not too much in order to remain i
the linear regime! there is an exponential dependence ofd
with X,

d~X!}exp~lX!, ~14!

where l, obtained from expressions~6!–~8! with
a5mSma , is given by

l512S a

ac
D 1/2, ac5

1
9 . ~15!
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55 1095DISSIPATIVE THREE-WAVE . . . . II. . . .
For a.ac , the perturbation is exponentially decreasing: t
symmetricsolution is stable. Otherwise,l.0 for a,ac ,
and the Stokes and material wave trajectories exponent
diverge at the rear part of the pulse. This result has a sim
physical interpretation: the pump wave is reconstructed w
an opposite phase (a, 1

4!, and it is able to stimulate onc
again the Stokes and material waves.

We look at the nonlinear evolution of this instability un
its saturation by numerically solving the spatiotemporal P
Eqs. ~1! in the comovingES frame (j5x1t,t5t), follow-
ing the characteristics@20,9,10# and using a standard fou
order Runge-Kutta algorithm~see Appendix A!. Starting
from the unboundedsymmetricsolution, after a transient
two asymptotic stable traveling wave structures are reac
@Figs. 2~a! and 2~b!# corresponding to the two possible wa
of developing the instability depending on the sign ofe in
Eq. ~13!. If e.0, thendS.da , and the effective materia
wave damping ra is greater than the Stokes onerS
(ra.rS), accounting for the phase change of the mate
amplitude@Fig. 2~a!#. The instability is saturated by excitin
a second Stokes-material pulse. Otherwise, ifra,rS , the
second pulse is also generated with opposite phases bet
the Stokes and material envelopes@Fig. 2~b!#, but now oper-

FIG. 2. Space-time evolution of the symmetric three-wave s
ton solution for small dissipation (ma53, mS5331022, and
a5931022) obtained by numerical computation of Eqs.~1! in the
comoving Stokes framej5x1t, giving rise to an asympotically
stable bisolitary structure:~a! ra.rS , the material envelope exhib
its ap phase change for the second peak;~b! ra,rS , the Stokes
envelope exhibits ap phase change for the second peak.
e

lly
le
h

ed

l

een

ates a change of sign for the Stokes wave. The symm
AS5Aa available for anya.ac is now broken. These prop
erties are the characteristic features of a pitchfork bifurcat
where the order parameter isd5dS2da and the control pa-
rameter isa. Therefore, fora,ac , the symmetricsolution
is unstable and the nonlinear spatiotemporal dynamics
veals an interesting class of stable bisolitary solutions.

Distance between two pulses: critical behavior

A parameter which characterizes the bisolitary structur
the distanced between the two pulses and, as we can see
Figs. 2~a! and 2~b!, it is conserved for every time. In fact, i
characterizes the growth rate of the instability as is shown
expression~14!. This distance is therefore proportional
l21,

d}
1

12~a/ac!
1/2. ~16!

For a&ac , the pump wave restored after the first pulse
just above threshold~2!: the second pulse will be stimulate
at infinity. This critical behavior of the ODE system is i
excellent agreement with the numerical simulation of t
nonlinear PDE system and we plot both determinatio
d5d(a) in Fig. 3.

Cascading towards turbulence

As the damping terma decreases, the pump wave—
having generated the second Stokes-material pulse—ma
sufficiently reconstructed~with two consecutivep-phase
shifts! in order to stimulate again a third pulse, the proce
repeating for smaller values ofa. Therefore, a set of peak
may be stimulated in cascade until exhausting the pump
linear stability analysis, assuming the peaks to be indep
dent of each other, yields the following formula for the cri
cal value necessary to stimulate the (n11) multipeak struc-
ture:

i-

FIG. 3. Distance between the two pulses composing the bis
tary structure of Fig. 2 vs dissipationa resulting from the numerica
dynamics ~continuous curve! and from the analytical expressio
~16! ~dashed curve!.
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1096 55CARLOS MONTES, ANTONIO PICOZZI, AND DERRADJI BAHLOUL
ac,n5
1

~2n11!2
, ~17!

whereac,1 is the critical value of the pitchfork bifurcation
Therefore, just belowac,n , the (n11)th pulse is excited a
infinity and will rejoin then-peak structure fora,ac,n fol-
lowing the critical behavior expressed in Eq.~16!. A typical
evolution of the symmetricsolution for small enougha
(ma51; mS51023) is plotted in Fig. 4. The Stokes envelop
exhibits a set of large peaks, but no steady solitary beha
is reached. We can interpret this dynamics in the phase p
representation~where a two-dimensional projection is sch
matized in Fig. 5!: the distortion and spreading of the traje
tories are related to the homoclinic orbit corresponding to
analyticalsymmetricsolution@Eq. ~7!#. Starting from the un-

FIG. 4. Space-time evolution of the symmetric three-wave s
ton solution for smaller dissipation than Fig. 2 (ma51,
mS51023, anda51023), giving rise to a multipeak turbulent-tai
structure.~The characteristic timet for SBBS is nanoseconds.!

FIG. 5. Phase plane representation~Stokes amplitude and its
derivative! vs parameterj5x1t, showing the sensitive zon
around the hyperbolic pointO. Starting from the unstable fixed
pointO, the plot of the trajectories is stopped after few right loo
~towardO8! and one left loop~towardO9!, the two branches of a
pitchfork bifurcation.
or
ne

e

stable fixed point O ~corresponding to Ep51, and
ES5Ea50), after achievement of the first loop it is not po
sible to predict the next ones. In fact, this sensitive zo
related to the hyperbolic pointO will split the trajectories
towards eitherO8 or O9, which are the two branches resul
ing from the pitchfork bifurcation. TheEi fields becoming
turbulent, we cannot predict how many peaks will be po
tive or negative in the Stokes or material spatiotemporal e
lution until the dissipation ends to contract the rear part
the structure~Fig. 4!.

We may point out in Fig. 4 thatsymmetricsolutions seem
to escape from the turbulent tail of the structure. This beh
ior is very evident as we approach the nondissipative in
grable problem (a50) where superluminous solitons leav
from the radiative envelope (p-pulse-type structure! propa-
gating at the light velocity@21#, the word ‘‘radiation’’ here
being opposed to ‘‘soliton.’’ Therefore,weak dissipation
traps the radiation leading to turbulent-tail solitary struc
tures.

III. ASYMMETRIC THREE-WAVE DISSIPATIVE
SOLITONS

In Sec. II, we explored the spatiotemporal behavior
any damping valuea, still remaining in the vicinity of the
symmetricsolution @Eqs. ~7! and ~10!#, which satisfies Eq.
~6!, characterized by its wave-front slopepsym ~11! and its
velocity Vsym ~9!. This solution being the only localized
backward-traveling three-wave structure in the dissipati
less case@13,14#, our aim here is to show how the dampin
reveals a family of asymmetric solitary structures when c
dition ~6! is no longer verified. Moreover, even for sma
damping values (a!ac , pÞpsym), the Stokes and materia
trajectories in the phase plane representation swerve from
sensitive homoclinic orbit~Fig. 5!, which caused turbulence
and a steady solitary attractor is once again reached. A
example, in Fig. 6 we plot the numerical space-time evo
tion for an initial Stokes condition having a wave-front slo
p50.9psym (a51022,ac), yielding a steady multipeak
structure. This modulated profile is progressively smooth
as the initial wave-front slopep deviates from the symmetri
cal valuepsym. Typical shapes of solitary structures, for di

i- FIG. 6. Space-time evolution of an initial Stokes condition ha
ing a slopep50.9psym57.45 with dissipation (ma51, mS51022,
anda51022) yielding a traveling multipeak three-wave structur
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FIG. 7. Asymptotic dissipative (ma51,mS51022, a51022) three-wave structures for the following.rS,ra andp,psym: ~a! p52, ~b!
p58.5, and~c! rS5ra andp5psym58.91.rS.ra andp.psym: ~d! p535 and~e! p580.
-
ik

t

be

y-

res
il
ferent wave-front slopesp, and a fixed damping value
a51022,ac , are plotted in Fig. 7. All these solitary struc
tures prove numerically stable in the asymptotic regime, l
that shown in Fig. 6. ForrS,ra @Fig. 7~a! and 7~b!#, we note
how broad and flat the Stokes envelope is compared to
symmetricsolution @Fig. 7~c!#. The resulting slopep, is
smaller and the corresponding velocityV will be greater, as
we shall see in Sec. IV. On the other hand, forra,rS , we
e

he

obtain a narrowed pulse@Fig. 7~d! and 7~e!# with a corre-
sponding smaller velocity. In fact, the velocity can even
subluminous.

In order to summarize the complex spatiotemporal d
namics, the domain of stability is schematized in the (p,a)
plane @Figs. 8~a! and 8~b!#. Figure 8~a! roughly shows the
domain of stable one-peak dissipative solitary structu
(ac,a,1) and the domain of multipeak turbulent-ta



ol
a
(
le
,

rd

te

m

t

be
or
n

k

t
qs.

s
can
as

p-
res
de-

re
n

lo

1098 55CARLOS MONTES, ANTONIO PICOZZI, AND DERRADJI BAHLOUL
structures~shaded region: 0,a,ac). Figure 8~b! is a mag-
nification of the last region showing the stable one-peak s
tary structure domain, and the multipeak structure dom
itself containing the time-dependent cascading areasT),
where the multipeak structures are accompanied by turbu
tails. These areas become thinner and closer together
cording to Eq.~17!, as the dampinga decreases, until they
constitute a foliated zone in the vicinity ofa50, to which is
associated a turbulent tail.

Luminous backward-traveling three-wave solution

For the particular case of the three-wave backwa
traveling solution at the velocity of light (V51), the nonin-
tegrable three-wave PDE equation system~3! reduces to the
problem of two ODE equations which we are able to in
grate. Indeed, the second equation~3! yields

ES5
EpEa*

mS
, ~18!

and we obtain a two-equation system for the pump and
terial wave intensities (I p,a5uEp,au2), where the Stokes
wave plays the role of a slave variable,

dIp
dX

52I pI a , ~19a!

dIa
dX

52I pI a22aI a , ~19b!

FIG. 8. Stability domain in the (p,a) plane:~a! Whole instabil-
ity domain (a,1), where stable dissipative asymmetric structu
are formed,~b! magnification of the region of small dissipatio
(a,ac5

1
9! where single-peak solitary~SS!, multipeak solitary

~MS!, and multipeak turbulent structures (T) are formed, depending
on the nearness with respect to the symmetrical wave-front s
psym.
i-
in

nt
ac-

-

-

a-

with X5z/mS anda5mSma . Introducing the change

I p5exp~W21/a!, ~20!

Eq. ~19a! verifies

I a52
dW

dX
, ~21!

and the equations system~19a! and ~19b! is reduced~see
Appendix B! to the integral

dW

dh
5expW2aW, ~22!

where h52X exp(21/a)%, and the constan
a5a exp(1/a) is determined by the limit condition
I p(X→2`)51. Equation~22! is of the separation of vari-
ables form, but no analytical solution is available. It may
easily integrated by a numerical Runge-Kutta algorithm. F
a.e, ~i.e., for the localization threshold conditio
a5mSma,1), we obtain two finite values ofW, sayW1 and
W2, solutions of

expW2aW50 ⇒ ~W1 ,W2! for a.e,

where all the derivatives ofW vanish for h→6`. For
I p(X→2`)51 we haveW251/a. Knowing W5W(h),
Eq. ~20! yields a traveling localized structure of the kin
form for I p , and from Eq.~21! of the asymmetric pulse form
for I a and I S ,

I a52
dW

dh

dh

dX
522 exp~21/a!~expW2aW!, ~23!

I S5
I pI a
mS
2 , ~24!

which are represented in Fig. 9~a!. The maximum ofI a ,
obtained fromdIa /dX50, atWa,max5a, is given by

I a,max52a~ lna11/a21!, ~25!

and the maximum of the Stokes pulseI S @obtained from
dIS /dX50, at WS,max, solution of expWS,max
5(11a)WS,max/2#, is given by

I S,max5
1

2mS
2 @a22exp~22/a!#WS,max

2 . ~26!

For example, let us takea5mSma50.625; then we have
a5a exp(1/a)53.095 64,W251/a51.6,W150.5724, and
I p(z→1`)5exp(W12W2)50.3578, which are in perfec
agreement with the space-time numerical simulation of E
~3!, namely,Ep(z→`)5AI p(z→1`)50.5983.

Even if this luminous solution is a particular one, it turn
out to be one of the most interesting attractors, since we
approach it in an actual Brillouin fiber-ring experiment,
we shall see in Sec. V. In Fig. 9~b! we show the three-
amplitude luminous structure fora5931022 (ma53 ;
mS5331022), associated with an actual experiment.

IV. STABILITY CRITERION: ASYMPTOTIC PROCEDURE

In Sec. III we showed the existence of a family of asym
totically stable three-wave dissipative solitary structu
whose velocity can be superluminous or subluminous
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pending on the wave front slopep of the backscattered o
material wave. An explicit solution for the particular inte
grable luminous velocity case has also been given. The
ject here is to determine the stability criterion for all the
structures by using an extension of the~already used@10#!
KPP asymptotic procedure@19# for this unbounded problem
in order to find the long term evolution of initially un
bounded Stokes or material envelopes in the presence
cw pump. The main property found is the existence o
particular solution~coinciding with the subluminous attracto
of paper I!, corresponding to the minimum authorized velo
ity V0, which turns out to be the frontier of stability for th
entire family of backward-traveling wave structures. For d
tails the reader can see Appendix C.

Considering that the threshold condition~2! is satisfied
(mSma,1), the Stokes and material waves are unstable,
exponentially growing in the linear parametric regime. T
instability is then saturated by the pump depletion and
three envelopes self-structure into a solitary wave. For
initially unbounded Stokes or material condition, the asym
totic procedure analytically determines the velocity and
slope of the wave front in the linear regime of the undeple
pump, which turns out to be the value of the velocity in t
nonlinear steady state of strong pump depletion, since

FIG. 9. Luminous three-wave backward-traveling solution:~a!
Shape of the analytical solutions~20!, ~23!, and ~24! for
a50.625. ~b! Asymptotic three-wave~luminous! amplitude struc-
ture forma53 andmS5331022 (a5931022) resulting from the
space-time dynamical evolution.
b-

f a
a

-

-
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e
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e
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e

front edge of the whole three-wave steady structure rem
in the linear undepleted pump regime every time.

Thus, assuming an undepleted pump wave (Ep51)
throughout the whole linear interaction range, from Eqs.~1!
we obtain the linearized equation set

~] t2]x1mS!~] t1ma!ES,a5ES,a , ~27!

whose characteristic equation for an exponential depende
@ES,a} exp (gt1px)# reads

~g2p1mS!~g1ma!51, ~28!

where we only keep the unstable root~Reg.0)

g5
p2ma2mS

2
1

A~p1ma2mS!
214

2
. ~29!

The solution of this linear problem may be given by mea
of the Fourier transform~with p52 ik andk complex!:

ES,a~x,t !5E
2`

`

ẼS,a~p!exp„g~p!t…exp~px!dp

whereẼS,a(p) is the Fourier transform of the initial condi
tion ES,a(x,t50). Let us look for backward-traveling wave
with velocity V,

z5x1Vt,

yielding

ES,a~z,t !5E
C
ẼS,a~p!exp@g~p!2pV#t exp~pz!dp.

~30!

This linear solution holds for long timest, allowing us to
obtain the asymptotic behavior of the far pulse wave fro
where the linear undepleted pump approximation always
mains valid. As a result of the parametric instability, t
asymptotic wave front structure grows exponentially. Sin
we are interested here in characterizing the whole family
backward-traveling wave structures, we will only consid
the exponential head-front dependence; then the corresp
ing Fourier transformẼS,a(p) has a pole. Moreover, the
function f (p)5g(p)2pV has a saddle point, and the inte
gral can then be performed by the steepest descent me
Therefore, it may be shown~see Appendix C!, that the pole
asymptotically dominates over the saddle point for any slo
p smaller than a critical valuep0 (p,p0). The stationarity
of the three-wave structure in its backward-traveling fra
then imposes

V~p!5
g~p!

p
5
1

2
2

mS1ma

2p
1

A~ma2mS1p!214

2p
~31!

where theamplitude velocityof the traveling wave structure
is then defined as the quotient between the temporal (g) and
spatial (p) growth rates. We plot this velocity dispersio
relation ~31! in Fig. 10.

In the opposite casep.p0, it is the saddle point which
dominates the long-term behavior, and, following the ste
est descent method@22#, the supplementary condition is

V5@]g~p!/]p#p5p0
. ~32!
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The velocity and the head-front slope then become fixed
Eqs.~31! and ~32!,

V05
21ma

22mSma12A12mSma

41~ma2mS!
2 , ~33!

p05
1

mS
1mS2

1

ma
2ma1

A12mSma

ma
1

A12mSma

mS
.

~34!

Hence this particular solution, which stands at the bottom
theV(p) curve of Fig. 10, separates the stable (p,p0) and
the unstable domains (p.p0). Moreover, such a solution i
an attractor for any initial condition having a wavefront slo
p.p0.

Let us finally point out the strength of this method, whi
allows us to determine the nonlinear stage of the interac
by simply looking at the linear asymptotic evolution of i
wave front, and characterizes the continuous family of thr
wave solitary attractors analyzed in Secs. II and III. In ord
to test this statement with an additional example, we con
ered an initial Gaussian condition for the Stokes envelo
The slope of its frontal tail being greater than any expon
tial one, it is expected from this theory that only the sad
point contributes to integral~30!; the numerical evolution
confirms this behavior and the corresponding fundame
subluminous attractor is asymptotically reached~Fig. 11!.

The reader may now ask: How could an initially bound
condition~paper I! yield the same asymptotic solution as th
obtained for a particular subluminous case of an initia
unbounded condition? This can be possible due to the
luminous velocity of the structure formed from the initial
bounded condition, since it becomes asymptotically deco
lated from its luminous tip of the foot at the beginning of t
interaction.

FIG. 10. Velocity dispersion: Amplitude velocityV5g/p of the
dissipative three-wave structure vs the exponential slopep of the
backscattered wave front showing the stable (p,psym) and unstable
(p.psym) domains.
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Balance between velocity dispersion and pump depletion

In fact, this stability problem has a fundamental physic
significance. Let us remark upon its resemblance to the w
known bright optical NLS soliton@18#, where compensation
between the linear dispersion and the nonlinear Kerr effec
only possible for negative dispersion of the group veloc
(]v/]k). Here, for the three-wave soliton, theamplitude ve-
locity g/p stands for the group velocity, the linear effect
the backscattering instability characterized by its growth r
p, and the nonlinear effect is the pump depletion. Figure
shows that the velocity dispersion now depends on the s
~instead on the wave number for the NLS soliton!. In our
case, if the velocity dispersion (]V/]p,0) allows the
smaller slopes to rejoin the higher ones~since their velocity
is greater!, a balance may be achieved betweenvelocity dis-
persion steepeningandnonlinear pump depletion flattening.
This case corresponds to stable soliton solutions (p,p0).
Otherwise (p.p0 ;]V/]p.0), both effects act in the sam
way and tend to flatten the three-wave structure, wh
spreads until reaching the subluminous attractor (p0 ,V0),
given by Eqs.~33! and ~34!, and described in paper I.

V. BRILLOUIN FIBER-RING LASER PULSES

The present theoretical study of an unlimited interaction
useful to enlight the nonlinear dynamics in a cw-pump
Brillouin fiber-ring laser, where solitonic pulses are obtain
below a critical feedbackRcrit and interpreted via a Hop
bifurcation process from the steady Brillouin mirror solutio
@6#.

We performed long-time numerical simulations of Eq
~1! for a ring configuration of lengthL corresponding to the
experiment of Ref.@6#, with periodic boundary conditions
for the Stokes wave,

Ep~x50,t !5Ecw5const, ES~x5L,t !5ARES~x50,t !
~35!

FIG. 11. Space-time evolution of an initial Gaussian Stokes c
dition. The wave-front tail profile being steeper than any expon
tial slope, the solitary structure is attracted by the sublumin
(p0 ,V 0) solution.
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in the solitonic feedback range (Rthres,R,Rcrit), and in Fig.
12 we plot the backscattered asymptotic pulses at the ou
of the ring cavity. Each pulse corresponds to one round t
and the distance between them measures the mean roun
period Dt normalized to the photon round-trip tim
t r5nL/c. We can see that both slightly superlumino
(Dt/t r,1) and subluminous (Dt/t r.1) regimes are avail-
able for the same configuration, by varying the feedba
control parameterR for the same gain lengthG5gLIp58.

FIG. 12. Backscattered asymptotic pulses at the output of
Brillouin fiber-ring cavity of Ref.@6#, obtained from numerical in-
tegration of Eqs.~1! with boundary conditions~35! for a SBBS gain
lengthG5gLIcw58. ~a! Superluminous regime (Dt/t r50.99933,
V.1) corresponding to a Stokes intensity feedbackR50.0225.~b!
Subluminous regime (Dt/t r51.00189,V,1) for R50.0196.
ut
p,
trip

k

Moreover, the widthdt of the pulses, which is inversely
proportional to the exponential slopep, is narrower for
smaller velocities in agreement with the dispersion curve
Fig. 10.

e

FIG. 13. Experimental recording of different trains of solita
Stokes pulses at the output of the 250-m fiber-ring cavity~whose
characteristics are given in Table I! corresponding to a feedbac
nearRcrit and a gain length of aboutG54. ~a! The shape presents
great resemblance to the asymmetric luminous dissipative so
shown in Fig. 9~b!. ~b! Comparison of two superimposed trains
pulses in order to show that the lower slopes correspond to
faster train, as predicted by the theory.
ng

e,

3

4

2

TABLE I. Computation parameters for the Nd-YAG~yttrium aluminum garnet! cw-pumped Brillouin
fiber ring laser. The active medium is a single-mode optical-fiber of lengthL5250 m, with a 11.3-
mm-diameter Ge-doped core (n051.44), and effective optical cross sectionS510210 m2. The pump wave-
length isl51.319mm ~acoustic wavelengthla50.43mm!. The coherent SBS coupling constant enteri
the normalization of Eqs.~1! is given by K5 (1/s) @(«0cn0

7)/(2r0ca)#
1/2(pp12/l)517.8 m s21 V21,

wheres.A2 is the depolarization factor.P is the pump power coupled into the fiber,I p5P/S is the pump
flux intensity,G5gLIp is the dimensionless SBS intensity gain length@g54K2/(ga«0c

2)], Ep is the pump
amplitude corresponding toI p5(n0«0c/2)uEpu2, t5(KEp)

21 is the coherent SBS characteristic tim
ma5gat is the dimensionless acoustic damping rate (ga5pDn.6.943 107 s21), me5get is the dimen-
sionless optical damping rate (ge.9.353103 s21, spatial intensity attenuation 2n0ge /c50.39 dB km21),
Rcrit51/@3 exp(G/3)22# is the critical Stokes intensity feedback for pulse formation@6#, and
Rthres5exp(2G) is the laser threshold feedback.

P@mW# 34.7 69.5 104.2 139 173
I p@MW/cm2# 0.0347 0.0695 0.104 0.139 0.17
G5gLIp 2 4 6 8 10
Ep(MV/m) 0.427 0.604 0.739 0.855 0.95
t5(KEp)

21(ns) 131 93.0 76.0 65.6 58.5
ma5gat 9.09 6.45 5.27 4.55 4.06
me5get 1.231023 8.731024 7.131024 6.131024 5.431024

Rcrit 0.26 0.106 0.049 0.024 0.01
Rthres 0.13 0.018 0.0024 3.331024 4.531025
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Experimental results

In order to test the universality of our results, we pe
formed additional experiments in another cw-pumped B
louin fiber-ring cavity, the experimental setup being the sa
as in @6#, and the characteristics given in Table I. In Fig
13~a! and 13~b! we plot the experimental recording of diffe
ent trains of solitary Stokes pulses at the output of the 25
fiber-ring cavity. Figure 13~a! shows a pair of solitary pulse
for a feedback just belowRcrit , and a gain length ofG54
(P.70 mW! corresponding to values of column 2. The
shape has a great resemblance to the asymmetric lumi
e
a
he
t
s
ro
di
-

-
-
e
.

m

us

dissipative soliton shown in Fig. 9~b!. We can measure a
time widthdt50.15360.004ms, which is inversely propor-
tional to the exponential slopep, and a mean round-trip pe
riod of Dt51.08760.004 ms, which is inversely propor-
tional to the velocity. In order to compare better the differe
round-trip periods for different slopes, controlled in the e
periment by varying the feedback betweenRcrit andRthres, in
Fig. 13~b! we show two superimposed trains of solitons. W
remark that the lower slopes correspond to the faster tr
Subsequent study must be done in order to understand
whole nonlinear dynamics in a lossy fiber-ring cavity, but t
present results are highly encouraging.
-

re
VI. SUMMARY: PARAMETER’S CLASSIFICATION SCHEME

a p V ra rS Dissipative three-wave soliton solutions

0 .0 .1 0 0 IST integrable total self-induced transparency: 3W
soliton solution

0 .0 .1 .0 0 integrable full pump-Stokes conversion~damped pen-
dulum!

.0 .0 1 integrable particular luminous solution~one peak!

!ac5
1
9

psym Vsym rS ra integrable unstable solution

.psym . Vsym .rS .ra nonintegrable chaotic structure

,ac ,psym .Vsym .rS .ra nonintegrable attractor, multipeak traveling structu
~in phase!

.psym . Vsym .rS .ra ibid. ~alternate phases!

,p0 . V 0 ÞrS Þra nonintegrable attractors from
multi-peak to one peak struct.

.p0 →V0 !rS @ra non-integrable unstable evolving
to ~p0, V0! attractor

ac5
1
9 >psym >Vsym >rS >ra pitchfork bifurcation

~cf. section 2.1!

.ac5
1
9 psym Vsym rS ra integrable stable one peak

attractor

,p0 .V0 ÞrS Þra non-integrable attractor one peak

.p0 →V0 !rS @ra non-integrable unstable evolving
to ~p0, V0! attractor
ii,
rob-
n
ee-
s.
be
ti-
ry
VII. CONCLUSION

We found a continuous set of asymptotically stable sup
luminous and subluminous dissipative three-wave solitary
tractors for the initially unbounded Stokes problem in t
presence of a continuous pump wave, dependent only on
wave-front exponential slopep of the backscattered Stoke
envelope. These dissipative three-wave solitons result f
the dynamical compensation between negative velocity
persion (]V/]p,0) and pump depletion, their stability be
r-
t-

he

m
s-

ing justified by an extension of the Kolmogorov, Petrovsk
and Piskunov asymptotic procedure to this unbounded p
lem. This dissipative soliton family completes the know
superluminous symmetric soliton solution and is in agr
ment with optical Brillouin fiber-ring laser experiment
Moreover, the symmetric soliton solution, is proved to
unstable for small dissipation exhibiting a turbulent mul
peak tail,via a cascading process from the stable bisolita
structure, with the dissipation~damping! as the control pa-
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rameter. This turbulence limits the analytical perturbative
proach@17# obtained fora!1 to a description for the shor
time evolution.
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APPENDIX A

Let us consider the nonlinear space-time evolution of
three-wave system governed by Eqs.~1! for an initially un-
bounded Stokes conditionES(x,t50) exponentially decreas
ing at x→2`, and counterpropagating with respect to t
continuous pumpEp(x,t50). Since we are looking for so
lutions localized in the vicinity of theES characteristic, it is
natural to reduce the problem to the initial-boundary va
problem in the comovingES frame (j5x1t,t5t), where
Eqs.~1! read

~]t12]j!Ep52ESEa,

~]t1mS!ES5EpEa* , ~A1!

~]t1]j1ma!Ea5EpES* ,

with the initial conditionES„j}sech(pj),t50…, and supple-
mented boundary conditions atj50, Ep(j50,t)51 and

Ea~j50,t!5@ES~j50,t!/2#@2p2ma1mS

1A41~ma2mS1p!2#.

It is convenient, for numerical integration, to remove t
space derivatives from Eqs.~A1! by introducing other func-
tionsZi(j,t) defined by

Zp~j,t!5Ep~j12t,t!,

ZS~j,t!5ES~j,t!, ~A2!

Za~j,t!5Ea~j1t,t!.

Then theZi ’s obey the following nonlocal equations inj:

]tZp~j,t!52ZS~j12t,t!Za~j1t,t!,

~]t1mS!ZS~j,t!5Zp~j22t,t!Za~j2t,t!, ~A3!

~]t1ma!Za~j,t!5Zp~j2t,t!ZS~j1t,t!.

Discretizing thej variable~throughj j5 jh !, we obtain a set
of functions Za

j obeying ordinary differential equations
These equations will be considered to depend explicitly
time through the spatial arguments of theZa

j functions,
namely,j6t, j62t. We can then apply a standard Rung
Kuttta algorithm to the numerical integration of these eq
tions. However, we must consider the stability of this alg
rithm. It is known, in the case of PDE describin
counterstreaming wave interaction that a numerical insta
ity occurs when the spatial steph is larger or equal to the
temporal steph 0. We have therefore been led to useh
-

.

e

e

n

-
-
-

il-

5h 0 /2. Then at each step of integration the pairwise valu
Za
j are incremented according to the Runge-Kutta algorith

while the odd ones are calculated by four-term interpolat
using the pairwise valuesZa

j . This procedure proves to b
remarkably stable.

APPENDIX B

From Eq. ~19a! we haveI a52I p8/I p , where the prime
stands for the derivative with respect toX. Differentiating
once more and eliminatingI a8 from Eq. ~19b!, we obtain a
closed second order differential equation forI p ,

d

dX F S I p8I pD 22I p12a lnI pG50. ~B1!

Introducing the change I p5expU, which satisfies
dU/dX5I p8/I p52I a , Eq. ~B1! is reduced to a first orde
differential equation

dU

dX
52 expU22aU1C,

whereC is a constant that can be removed with the chan
{ @W5U2C/(2a); h52X exp@C/(2a)#%, yielding

dW

dh
5expW2aW, ~B2!

and where the constanta5a exp@2C/(2a)#5a exp(1/a)
is determined from the limit conditionI p(X→2`)51.
Equation~B2! is of the separation of variables form, but n
analytical solution is available. It may be easily integrated
a numerical Runge-Kutta algorithm.

APPENDIX C

The basic equations~1! linearized in the parametric
(Ep51) regime are

~] t2]x1mS!~] t1ma!ES,a5ES,a ,

whose characteristic equationg(k) for an exponential depen
dence@ES,a} exp (gt2 ikx)# reads

~g1 ik1mS!~g1ma!51. ~C1!

The solution is then given by means of the Fourier transfo

ES,a~x,t !5E
2`1 is

`1 is

ẼS,a~k!exp~2 ikx!exp@g~k!t#dk,

wherek is a complex number, and

ẼS,a~k!5E
2`

`

ES,a~x,t50!exp~ ikx!dx.

Looking for backward-traveling waves with velocityV,

z5x1Vt,

the solution is written
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ES,a~z,t !5E
2`1 is

`1 is

ẼS,a~k!exp@g~k!1 ikV#t exp@2 ikz#dk,

~C2!

whereẼS,a(k) is the Fourier transform of the initial cond
tion. This linear solution holds for long timest, allowing us
to obtain the asymptotic behavior of the far wave front of t
pulse. In order to compute this integral, we remark, on
one hand, that the real part of the functio
f (k)5g(k)1 ikV has a saddle point atk05 ip0 (p0 being
real! that is maximum along the realk axis and minimum
along the imaginary axis. On the other hand, because of
exponential wave-front dependenceES,a(x)}exp(psx), the
corresponding Fourier transformẼS,a(k) has a pole at
ks5 ips (ps being real!. Two cases must be then analyzed

~a! ps,p0: The contour in the complexk plane, which
may be chosen, is shown in Fig. 14; therefore, for long-ti
interaction, the integral~C2! can be written as the sum of th
pole and the saddle-point contributions,

ES,a~z,t !5I pol1I sad,

FIG. 14. Contour in the complexk plane.
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I pol}ẼS,a~k5 ips!exp@ f ~k5 ips!t#exp~psz!,

and

I sad}~ t f p5p0
9 !21/2ẼS,a~k5 ip0!exp@ f ~k5 ip0!t#exp~p0z!.

Since the real part of the functionf (k) has a minimum along
the imaginary axis, the long-time behavior will be dominat
by the pole. The corresponding stationary condition is th
written

V~k!5 i
g~k!

k
, ~C3!

which describes a continuous family of stable solitary str
tures whose velocity~Fig. 10! is only dependent on the wav
front slopeps .

~b! ps.p0: In this case, the pole can no more contribu
to the integral since all the singularities must lie inside t
upper half-plane contour. Following the steepest desc
method@22#, the supplementary condition is

V5@]g~k!/]k#k5k0
;

the velocity and the head-front slope then become fixed
~C1! and ~C3!,

V05
21ma

22mSma12A12mSma

41~ma2mS!
2 ,

p05
1

mS
1mS2

1

ma
2ma1

A12mSma

ma
1

A12mSma

mS
.

Any initial slope conditionpS.p0 spreads until reaching th
minimum point attractorp0.
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